Delphi and Lazarus module RK Method v.4.00 beta
The module contains a function for solving ordinary differential equations and their
systems (of virtually unlimited size) using the 4th rank Runge-Kutta method with a

constant step. All types needed to work with it are available from the module.

The method is intended for ODE systems of the type:

X=f(t,X)Y,...),
Y=g(tX)Y,...),
etc.,

having a solution:

X=X(t),
Y=Y (¢),
etc.,

where t — independent variable (usually time);

X, Y, etc. are the desired functions (variables dependent on t).

The functions f, g, etc. must be given. The initial conditions, i.e. the values of the
sought functions at the initial moment, must also be given.

One differential equation is a special case of a system with one eq.

The method can also be useful for solving differential equations of higher (second, etc.)
order, since these equations can be represented by a system of differential equations of
the first order.

The Runge-Kutta method involves the use of the following formulas:

Xk+1:Xk+%<k1+2k2+2k3+k4)a

Yk+1:Yk+%(m1+2m2+2m3+m4)9 cees

where

k=t (6,X Y. ) A,
mlzg(tk)Xk:Yk"")At, ey
At

k, m;
k2:f<tk+?,Xk+?,Yk+7,...)At,

At k m
m2:g(tk+7!xk+?1;Yk+71,---)At’ DREY



At m,

_ kz
kS_f(tk+?)Xk+E’Yk+7)'--)At9
At k m
m3:g(tk+7)xk+?2,Yk+72,...)At, ey

ko =f (6, +ALX, +k,, Y, +m,,... ) At,
m,=g(t, +AtX, +K,, Y, +m,,... )AL, ...

The module introduces the following types:

1) TFloat typeis simply a Double type (you can replace it with Extended, for
example ):

type
TFloat = Double;

2) Types TFloatVector and TFloatMatrix — one-dimensional and two-
dimensional dynamic arrays of elements of the TFloat:

type
TFloatVector = array of TFloat;
TFloatMatrix = array of array of TFloat;

3) Type TSystem - procedural:

type
TSystem = procedure(t: TFloat; const X: TFloatVector;
var RP: TFloatVector);
Procedures of this type are used as input to a method and serve to describe a
system of equations. Although Delphi and Lazarus allow changing elements of a
constant dynamic array, the body of the procedure should use elements of the
array X as read-only!

Function rk4fixed() for solution of ODEs and ODE systems

The function prototype is as follows:

function rk4fixed(
Syst: TSystem;
const InitConds : TFloatVector;
First : TFloat;
Last : TFloat;
PointsCnt : Cardinal;
out tPoints : TFloatVector;
out XPoints : TFloatMatrix;



StepsFact : Cardinal =1
) : Word;

Function parameters:

1) Syst — an input parameter of the procedural type TSystem, describing the
right-hand sides of the system of equations (i.e., functions f, g, etc.; see above).
The system equations and sought variables are numbered starting with index zero.
The parameter will be discussed in the example below.

2) InitConds — input parameter, vector of initial values of the sought variables
(initial conditions). The numbering is consistent with the numbering of the
system equations, i.e. for the first equation of the system, which has index zero,
the 1nitial condition also has index zero, etc.

3) First, Last — input parameters , the initial (for which the initial conditions are
specified) and end points of the calculation interval.

4) PointsCnt — input parameter, the number of points of the calculation interval
for the output data.

5) tPoints — an output parameter, a one-dimensional array in which the values of
the independent variable will be output. The size n of the array is equal to the
number of points in the calculation interval for saving. The numbering of points
starts from zero. Index zero corresponds to the starting point of the calculation
interval. The maximum index (equal to n -1) corresponds to end of calculation
interval.

6) XPoints — output parameter, a two-dimensional array (matrix) of the results of
calculating the variables (excluding the independent one). The matrix has a size
of m by n, where m — the number of variables (not counting the independent
one), and n is the same as for tPoints. For example, XPoints[1,0] — the
value of the variable with index 1 at the initial point of the calculation interval.

7) StepsFact — an input parameter used (along with PointsCnt) to regulate the
accuracy and time of calculation by increasing the number of steps in the
calculation interval by StepsFact times inside the method. For example, if the
specified number of points to save is 11 (corresponding to 10 steps), then with the
StepsFact parameter equal to 1 thousand, the calculation will be performed
with a total number of steps of 10 thousand. Intermediate calculation points are
discarded from the result. This parameter is set to one by default.

The function returns error codes. The calculation results are available through the
variables tPoints and XPoints.

List of error codes:

Error Code 1000: Invalid data.
Error Code 2000: The end of an interval must be no earlier than its beginning on the
axis.



Error Code 3000: Unable to allocate memory.
Error Code 0: No errors found .

Example of solving a system of differential equations using the rk4fixed() function

Let the problem be stated as follows:

dXe/dt = -1/t
dXy/dt = -2Xe/t?
Xo(1) = 1

Xl(l) = 1

It has the following analytical solution (later you can compare the calculation results
with it):

Xo(t) = 1/t
X (1) 1/t?

First of all, we write down the procedure Syst, which defines the system of equations:

procedure Syst(t: TFloat; const X: TFloatVector;
var RP: TFloatVector);

begin
RP[O] := -1.0/(t*t); // means dxe/dt = -1/t"2
RP[1] := -2.0*X[0@]/(t*t); // means dX1/dt = -2X@/t"2
end;
And an array of initial conditions (there are 2 of them) InitConds:
var InitConds : TFloatVector;
SetLength(InitConds, 2); // memory allocation
InitConds[@] := 1.0; // X0(1) =1
InitConds[1] := 1.0; // X1(1) =1
// the same, but shorter: InitConds := [1,1];
Let's say we want to get the calculated values at points t =1, 2, .., 11. These are 11

points, starting with the initial one (we have First = 1) and ending with 11. Then we
set the parameter Last value 11 and the PointsCnt parameter meaning 11.
StepsFact is selected for the desired calculation accuracy. Let's set it, for example,



equal to 10. Let's call the result arrays in the calling program, for example, tOut and
XOuts.

var
tOut : TFloatVector;
XOuts : TFloatMatrix;

To calculate, we call the method function:
Code := rk4fixed(Syst, InitConds, 1., 11., 11, tOut, XOuts, 10);

After execution, the function will return the error code Code of the Word type (this
variable must be declared in advance). If everything is OK, then this code is zero. If
successful, the tOut and XOuts arrays will contain the results of the system solution.
The calculation results are interpreted as follows:

tOut[I] — t[I]

XOuts[0,I] — XO[I]

XOuts[1,I] — X1[I]

where I is the point number, starting from zero.

See also the example included with the module (for Lazarus).



